
Week 5 - Evaluating Integrals, Iterative Solving

Reminder - the best place to learn MATLAB (or anything, really) is the internet! StackOverflow and MathWorks' own MATLAB Exchange are filled to the brim with

people asking and answering questions about MATLAB. MATLAB's own documentation is also extensive and extremely helpful. It includes descriptions of how to

call functions as well as usage examples.

Download this page as a PDF here (this document is generated automatically - print this page to PDF from your browser for the best result).

Return to Lectures

Functions of Functions

Like in many other languages, you can evaluate functions in terms of other functions. This enables you to build complex, multi-variate functions which are much

easier to debug. Let's walk through an example using the ideal gas law.

Assume that we want to model the pressure of a system where it is appropriate to use the ideal gas law, and we know we are going to vary the temperature in the

system in a sinusoidal (according to the sin function) manner. We could write one function where we use sin in the ideal gas law, but that is going to make it

unrecognizable at a glance and add a level of complexity we don't need. matlab temperature = @(time) 115 + 5 * sin(time); This function is

array-valued, though none of the operations we are doing require use of the . operator.

Now let's set up the ideal gas law. Here we are going to use molar volume rather than extensive volume so n is not included. matlab % define the gas

constant R = 8.314; % define our function pressure_IGL = @(volume, time) R * temperature(time) / volume; % descriptive

name! Notice that our variable names can be long and descriptive, and that we can use previously defined variables when setting up the function. When we call

temperature, we pass through time, which we gave to pressure_IGL.

Try using this function to plot over some range of times, then make and label a plot appropriately.

Evaluating Integrals

MATLAB has the capability to do both symbolic (indefinite) and numeric (definite) integrals, using int and integral, respectively. If you do a good job keeping your

numeric and symbolic functions separated, this difference will be a non-issue, so do so!

The intricacies of integration in MATLAB are best learned through practice, so I will preproduce some examples from the documentation here, but I definitely

recommend solving practice problems to really learn.

Numeric

```matlab % evaluate the integral of e^(-x^2) * log(x)^2 (not something we would want to do by hand) fun = @(x) exp(-x.^2).*log(x).^2; % MATLAB allows for the

evaluation of equations at infinity and negative infinity q = integral(fun,0,Inf)

1.9475 ```

Symbolic

As the documentation explains, symbolic integration can prove a lot more complicated for a myriad of reasons. It's rare that you will have to do it in chemical

engineering, but knowing how to will help you out tremendously in those rare cases. ```matlab % let's find the indefinite integral of sin(atheta + b) % declare

needed symbols syms a b theta % define our function, remembering not to provide an @(input) f = sin(atheta+b); % perform integration int(f)

ans = -cos(b + a*theta)/a ```

Iterative Solving

There are quite a few circumstances in chemical engineering where you may want to iteratively calculate two values until they converge, particularly in the case of

stability calculations. While there are methods which will automatically perform iteration (see vpa from Week 4), they conceal a lot of the relevant math behind the

systems and, while excellent tools once you have mastered the basics, can interfere with your understanding. This may seem medieval, but we recommend

setting up systems which require iterative calculation using for or while loops, at least until you really understand how they work.

For an example, let's try and solve sin(x)=1. Pretend for now that inverse sin does not exist, because you won't normally have a closed-form, analytical solution.

Pseudocode - studying the workflow

First, let's do some pseudocode so that we can understand the workflow. ```matlab % set up our symbols and function - for iterative calculation, we use numeric

functions func = @(x) sin... % we need to decide how accurate we want to be, how many times we want to try at max, and a starting guess acceptable_error =

0.005 initial_guess = 2.0 for attempt = 1:max_number_attempts: % evaluate sin at our current guess temp = evaluate...

% check to see if we are acceptably close to the answer 

if abs(1 - temp) < acceptable_error: 

   % done 

 

elseif % vale is too small:

https://stackoverflow.com
https://www.mathworks.com/matlabcentral/
https://www.mathworks.com/help/matlab/
https://jacksonburns.github.io/MATLAB-Start-to-Finish/Lectures/Week-5/Week-5.pdf
https://jacksonburns.github.io/MATLAB-Start-to-Finish/Lectures/Lectures-Landing-Page
https://www.mathworks.com/help/symbolic/integration.html
https://www.mathworks.com/help/matlab/ref/integral.html
https://www.mathworks.com/help/symbolic/vpa.html?s_tid=srchtitle
https://jacksonburns.github.io/MATLAB-Start-to-Finish/Lectures/Week-4/Week-4


   % make our guess smaller 

else: % our value must be too big 

   % make the guess bigger

```

Code - studying the implementation

And now let's formalize this into something a little more syntactically correct. matlab func = @(x) sin(x); acceptable_error = 0.005

initial_guess = 2.0 for attempt = [1:max_number_attempts]: temp = func(guess); if abs(1 - temp) < acceptable_error:

disp(guess) break elseif temp<1: guess = guess * 0.95; % reduce the size of guess by 5% of its current value else:

guess = guess * 1.05; If this never reaches the acceptable error, you can add more iterations or restart the process with a better first guess. Odds are this

won't work the first time, which is alright! Every time you revisit the problem, you learn more.

Writing the guess-modifying if statements is the hardest part of iterative equation solving. It requires understanding the nature of the function you are trying to

solve - speaking of which, can you think of a limitation of trying to solve a periodic function with iterative calculation?

	Week 5 - Evaluating Integrals, Iterative Solving
	Functions of Functions
	Evaluating Integrals
	Numeric
	Symbolic

	Iterative Solving
	Pseudocode - studying the workflow
	Code - studying the implementation

