Source code for mordred.TopologicalCharge
from itertools import chain
import numpy as np
from six import integer_types
from ._base import Descriptor
from ._graph_matrix import DistanceMatrix, AdjacencyMatrix
__all__ = ("TopologicalCharge",)
class ChargeTermMatrix(Descriptor):
__slots__ = ()
explicit_hydrogens = False
def parameters(self):
return ()
def dependencies(self):
return {
"A": AdjacencyMatrix(self.explicit_hydrogens),
"D": DistanceMatrix(self.explicit_hydrogens),
}
def calculate(self, A, D):
D2 = D.copy()
D2[D2 != 0] **= -2
np.fill_diagonal(D2, 0)
M = A.dot(D2)
return M - M.T
[docs]
class TopologicalCharge(Descriptor):
r"""topological charge descriptor.
:type type: str
:param type:
* "raw": sum of order-distance atom pairs coefficient
* "mean": mean of order-distance atom pairs coefficient
* "global": sum of mean-topoCharge over 0 to order
:type order: int
:param order: int
References
* :doi:`10.1021/ci00019a008`
"""
since = "1.0.0"
__slots__ = ("_type", "_order")
explicit_hydrogens = False
tc_types = ("global", "mean", "raw")
[docs]
def description(self):
return "{}-ordered {} topological charge".format(self._order, self._type)
@classmethod
def preset(cls, version):
return chain(
(cls(t, o) for t in ("raw", "mean") for o in range(1, 11)),
[cls("global", 10)],
)
def __str__(self):
if self._type == "global":
return "JGT{}".format(self._order)
elif self._type == "mean":
return "JGI{}".format(self._order)
else:
return "GGI{}".format(self._order)
def parameters(self):
return self._type, self._order
def __init__(self, type="global", order=10):
assert type in self.tc_types
assert type == "global" or isinstance(order, integer_types)
self._type = type
self._order = order
def dependencies(self):
return {"CT": ChargeTermMatrix(), "D": DistanceMatrix(self.explicit_hydrogens)}
def calculate(self, CT, D):
D = D * np.tri(*D.shape)
D[D == 0] = np.inf
f = D <= self._order if self._type == "global" else D == self._order
CT = CT[f]
if self._type == "raw":
return np.abs(CT).sum()
# create frequency vector
Df = D[f]
C = Df.copy()
for i in np.unique(Df):
C[Df == i] = len(Df[Df == i])
return np.abs(CT / C).sum()
rtype = float